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Abstract. We present results of Monte Carlo simulations for directed percolation in 2 +  1 
dimensions very close to the percolation threshold. Our values for p c  for bond and site 
percolation on the BCC and simple cubic lattices are more precise than previous estimates 
by one to two orders of magnitude. The improvement on the critical exponents describing 
the behaviour at p c  is less impressive, but they are also substantially more precise than 
previous ones. 

1. Introduction 

Directed percolation [ 1-41 can be understood as a prototypical model for the spreading 
of some influence (such as an epidemic, a forest fire, or a political opinion) under a 
bias pushing the spread predominantly in one direction. In this interpretation, the 
preferred direction is a spatial direction, and directed percolation in d + 1 dimensions 
is relevant for the spreading in D = d + 1 dimensions of space. 

A more natural and more interesting interpretation arises, however, if we take the 
biased direction as the direction of time. In this case, directed percolation describes 
the-causal, but otherwise undirected-spreading in d dimensions of space, of an 
influence which does not involve a conserved quantity and which does not exhaust its 
resources. In this context it is sometimes called the simple epidemic with recovery 
(without immunisation), or the basic contact process [5]. Its critical properties near 
the threshold for infinite spreading should be also those of Schlogl’s first model [6] 
or of the Malthus-Verhulst model with spatially inhomogeneous fluctuations. 

Within this latter interpretation, it was found in [7] (see also [8-101 that the critical 
behaviour of directed percolation is the same as that of reggeon field theory (RFT) 

[ll-131, a theory studied intensively by particle physicists in the 1970s. Since the 
physical number of dimensions for RFT was 2 +  1, it was also for this dimensionality 
that most intensive studies were performed. The methods used were mostly high- 
temperature expansions [ 121, loop expansions, and E expansions around 4 +  1 
dimensions [13]. 

Directed percolation in 1 + 1 dimensions has been studied very intensely during 
recent years [14], with the result that the RFT results are now obsolete. In contrast, 
and in spite of recent work done within the directed percolation interpretation proper 
[15-181, it seems that the RFT exponents and amplitude ratios still represent the most 
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precise overall description for the critical behaviour of directed percolation in 2 + 1 
dimensions. 

It is the aim of the present paper to change this situation by means of Monte Carlo 
simulations. These simulations are very straightforward. We work on discrete spatial 
lattices, and we use discrete time. At each time step, we keep a list of growth sites, 
representing the cluster of sites wetted (or infected) at the previous time step, and we 
build up a new list of sites, neighbouring the old growth sites, which are to be the 
growth sites of the next generation. We start with a single growth site at time zero. 
In order to simulate bond percolation, we let every growth site infect each neighbour 
independently with probability p .  For site percolation, we assume that a growth site 
infects either none of its neighbours or all of them. Multiple infection, leading to a 
site appearing twice in the list of growth sites, is avoided by keeping a flag at each 
site. This flag is on if the site has already been infected in the present time step, and 
it is cleared before going on to the next time step. It is only the clearing of these flags 
(corresponding to recovery without immunisation) which makes directed percolation 
in d + 1 directions different from the spreading of undirected percolation in d directions 
[ 19,201. 

2. The simulations 

Spreading of the contact process on a square lattice corresponds, when seen in 2 +  1 
dimensions, to percolation on a BCC lattice with the preferred direction along one of 
the axes [21]. On the other hand, spreading in a simple cubic lattice with bias along 
the space diagonal leads, when projected down to two dimensions, to a triangular 
lattice with spreading only along three of the six possible directions (the three other 
directions would correspond to spreading backward in time). 

I made extensive simulations only very close to the critical point, for bond percola- 
tion on both lattices. For each value of p ,  between lo5 and 2.5 x lo5 clusters were 
simulated. The number of time steps per cluster was 1000, unless the cluster had 
already died out earlier. Somewhat less extensive simulations were also made for site 
percolation on both lattices, also for p very close the p c .  The total CPU time used for 
all these simulations was about 70 hours on a Sun 4 workstation. 

The measured quantities were the survival probability P( t ) ,  giving the chance that 
after t time steps there is still at least one growth site, the average square radius R2(  t ) ,  
and the average number of growth sites n ( t ) .  

At the critical point p = p c ,  we expect scaling laws 

P (  t )  - tCS (1) 

n ( t ) - t V  (2) 

R’( t )  - tZ. (3) 

Notice that n ( t )  is the average taken over all clusters, including those which have 
already died out, while R 2 ( t )  is of course averaged only over the growth sites in the 
surviving clusters. The average number of growth sites per surviving clusters is N (  t )  = 
n ( t ) / P ( t ) .  The fractal dimension d f  of the surviving clusters at fixed time is defined 
as N - Rdf, which gives d f  = 2(  7 + S)/z. 

The density of growth sites at the origin r = 0 can be bounded in terms of P( t ) .  
The probability of having a growth site at r = 0 is indeed equal to the probability 
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P ( t /2 )  of having at least one growth site a time distance t /2 away from the seed, 
multiplied by the same probability of having at least one growth site the same distance 
away from the point (0, t) times the probability that some site is common to both sets 
of growth sites. Omitting the last probability, we have the inequality 

p ( r =  0, t) s [P(t /2)I2.  (4) 

P(*,  t )  = d o ,  t )F(r2/ t ' )  ( 5 )  

i dz -  7 b 26. (6) 

If the r dependence of the density of growth sites scales with the exponent z 

then this implies p ( 0 ,  t )  - t77-'d'2 and 

For p > p c ,  it is clear that the inequality (4) becomes saturated for t + CO, and using 
a scaling ansatz for general p near p c  one sees easily that the 'hyperscaling' relation 
(6) should become an equality too [ 9 ] .  It gives d f =  d / 2 +  7 / z .  

Results for the three quantities P( t ) ,  n( t )  and R2( t )  obtained for bond percolation 
on the sc lattice are shown in figure 1. It is obvious from this figure that 0.3821 < p c <  
0.3824, which is already more precise than the best previous estimates, p c  = 
0.3825 *0.001 [ 181 and pc = 0.382 hO.001 [ 151. Very similar curves are obtained for 
the BCC lattice and for site percolation. In order to obtain more precise estimates for 
p c  and for the critical exponents, we plot in figure 2 the slopes of the curves shown in 
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Figure 1. Results of Monte Carlo simulations for 
bond percolation on the simple cubic lattice. Each 
panel contains four curves with (from bottom to top) 
p = 0.3821, 0.3822, 0.3823 and 0.3824. The panels 
show ( a )  the survival probability, ( b )  the average 
number of growth sites and ( c )  the average mean 
square radius. 
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figure 1, and in figure 3 the analogous results for the BCC lattice. In figures 4 and 5 ,  
we show the average number of growth sites n( t)  for the two site percolation problems. 

More precisely, the quantities shown in figures 2 and 3 are averaged local slopes 

and similarly for 7, and 2,.  

In general we have to expect corrections to scaling of the type 

P ( t ) c c P  ( Z )  1+-+,+ . . .  

and similarly for the other two bbservables with correction-to-scaling exponents T I ,  

respectively if, instead of 6’. This implies for the local slope 6, defined in (7) the 
behaviour 

a S’b 
t t  

8,  = 6 + - + 7 + .  . . (9) 

and analogous expressions for 7, and 2,. 
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Figure 3. Same as figure 2, but for the BCC bond 
percolation. The four curves in each panel corre- 
spond (from bottom to top) to p = 0.2872, 0.2873, 
0.2874 and 0.2875. 
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Figure4. Same as figure l (b) ,  but for sc site percola- 
tion. The six curves correspond (from bottom to top) 
to p =0.4315 (one of the two alternatives obtained 
in [15]), 0.4349, 0.4351, 0.4353, 0.4355 and 0.4357. 

Figure 5: Same as figure 4, but for BCC site percola- 
tion. The four curves correspond (from bottom to 
top) to p =0.3444, 0.3446, 0.3448 and 0.345. 
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Since we have plotted the slopes in figures 2 and 3 over l / t ,  any deviation from 
straight lines of the curves corresponding to p = pc  indicates a correction-to-scaling 
exponent less than 1. We see that there are indeed clear indications for such corrections. 
They are most prominent for P(t) in the case of the sc lattice (for both the bond and 
site problems), and for R 2 ( t )  in case of the BCC bond problem. In these cases, the 

- 0.5. 
In contrast, our best fits gave S’(BCC,bond) LI z ~ ( ~ ~ , ~ ~ ~ ~ )  LI 0.7, and T ~ ( ~ ~ ~ , ~ ~ ~ ~ )  E 

correction-to-scaling exponents are close to t ,  s ~ ( ~ ~ , ~ ~ ~ ~ )  = s ~ ( ~ ~ , ~ ~ ~ ~ )  - - z ~ ( ~ ~ ~ , ~ ~ ~ ~ )  - 
rlt(SC,bond) - - 0.6. Since the correction-to-scaling exponents should be universal (i.e. 
independent of the lattice), we conclude that indeed all of them are -0.6. The 
corrections to scaling for the site problems are consistent with this but less significant, 
due to the less extensive simulations. 

Using this, our best final estimates for p c  and for the critical exponents become 

0.28730* 0.00006 (10) 
pLSCsbond) = 0,38216k 0.00006 (11) 

0.3445 * 0.00012 (12) 
PLsc,slte) = 0.43525 *0.00013 (13) 

P:BCC,bond) = 

p:BCC,site) = 

and 
z =  1.134*0.004 S = 0.460 * 0.006 

77 =0.214*0.008 d f =  1.187 * 0.007. 
In these estimates, we have put most weight on those data which show least corrections 
to scaling, and we have taken into account the hyperscaling relation (6). 

3. Discussion 

For all four lattices, the percolation threshold p c  is in reasonable agreement with 
previous estimates [ 15, 17, 181, but is more precise by more than one order of magnitude 
(in particular, the ambiguity in p:sC,s’te) found in [ 151 is resolved in favour of the bigger 
value). This is mainly because the previous results were based on exact enumerations 
which involved much shorter times ( t  < 20 instead of t = 1000 in the present paper). 

Since the noise inherent in Monte Carlo data prevents a clean correction-to-scaling 
analysis, the improvements on the critical exponents are much less dramatic. Neverthe- 
less, our exponents seem more precise than those given previously. The overall 
agreement is reasonable. The biggest discrepancy with the RFT estimates of [ 121 is for 
the exponent z which was obtained there as z = 1.16*0.01. On the other hand, the 
present value of z agrees with that of [ 131, while the value 77 = 0.26 i. 0.02 given there 
is somewhat higher than ours. Our value of 77 seems indeed to be the lowest published 
so far. 

Most recent estimates of critical exponents do not assume the validity of the 
hyperscaling relation ( 6 )  and quote their results in terms of differently defined 
exponents. For instance, the exponent y is defined via the cluster size in d + l  
dimensions, i.e. via the total number S of infected spacetime points, as S - ( P ~ - ~ ) - ~  
for p f p c ,  and it satisfies the scaling relation y = q ( l +  7).  The values quoted in [ 181 
are y = 1.60* 0.04, but v l l (  1 + 7 )  = 1.61 * 0.02. This makes a direct comparison with 
the present results somewhat difficult. Also, I have not attempted to estimate any 
exponent describing the behaviour off the critical point, such as the transverse and 
longitudinal correlation length exponents vl and V I / .  



Directed percolation in 2 + 1 dimensions 3679 

A more interesting comparison with previous results can be made by combining 
our values of p, with the previous exponent estimates. As remarked repeatedly 
[4, 15, 16, 181, the largest uncertainty in estimates of critical exponents from exact 
series is due to the uncertainty of p,. For instance, the error in the estimate y =  
1.57*0.04 of [15] is nearly exclusively due to the error in p,, as seen from their 
p,-dependent estimates: y = 1.565 * 0.003 + 37Apc with Apc = pc - 0.382 for the sc bond 
problem, y = 1.494 * 0.001 + 22Apc with Ap, = pc  - 0.4315 for the sc site problem, y = 
1.570*0.0O4+28Apc with Apc=p,-0.344 for the BCC site problem, and y =  
1.59 * 0.002 + 36Ap, with Ap, = p, - 0.288 for the BCC bond problem. Inserting here our 
values of p,, we obtain a consistent average y = 1.571 * 0.006, i.e. an error reduction 
by nearly one order of magnitude. Similarly, we get from [ 151 the improved estimates 
vll = 1.286 * 0.005 and vi = 0.729 * 0.008. From these we obtain z = 2 U,/ vl1 = 
1.134It0.013 and 7 = y / q  - 1 = 0.222*0.006. Both values are in excellent agreement 
with those given in (14). In the same way, the estimate of the resistivity susceptibility 
exponent yR of [ 161 improves from 2.70 * 0.04 to yR = 2.703 * 0.006. Finally, using 
p ,  = 0.382 16 for the sc bond problem brings the estimate of y of [ 181 down to 1.58 * 0.02, 
improving thus the agreement with [l5]. 

In conclusion, we can say that our improved values of the percolation thresholds 
represent an important result of the present paper. Combined with previous results 
from series expansions, they give estimates of the critical exponents which are internally 
consistent. They are also consistent with the estimates of the exponents obtained 
directly from our Monte Carlo data, and typically have the same errors. 
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